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Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate
the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to
not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development,
angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the
progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune
cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells
with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant
metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that
increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development
of novel antitumor therapeutics.

1. Introduction

Chemoattractant receptors are a family of G protein cou-
pled seven transmembrane cell surface receptors (GPCRs).
According to their source of ligands and expression patterns,
the family members are categorized into classical GPCRs
and chemokine GPCRs. The former include formyl peptide
receptor and its variants (FPR1, FPR2, and FPR3), platelet
activating factor receptor (PAFR), activated complement
component 5a receptor (C5aR), and leukotriene B4 receptor
and its variants (BLT1 and BLT2). Chemokine GPCRs are
composed of four subfamilies based on the conserved N-
terminal cysteine residues in the mature proteins of the lig-
ands, CC-, CXC-, CX3C-, and C-, and thus are termed CCR,
CXCR, CX3CR, and XCR, respectively. So far, approximately
50 chemokines and at least 18 chemokine GPCRs have been

identified [1] (Table 1). Promiscuity is a characteristic of
GPCRs and their ligands. Some chemoattractants bind to
more than one GPCR. Conversely, some GPCRs display
overlapping ligand specificities with variable affinity and
functions [2]. Although chemoattractant GPCRs are mainly
expressed by leukocytes and their major function has been
considered as mediators of leukocyte trafficking and homing,
over the past two decades, the role of GPCRs and their ligands
in tumor progression began to be increasingly recognized.
The expression of some GPCRs or ligands in tumor tissues
has been shown to be correlatedwith the therapeutic outcome
of tumor patients [3–10]. It is undeniable that tumor cells are
one of themajor sources of chemoattractants in tumor tissues
and many tumor cells express one or more chemoattractant
GPCRs to their advantage [11]. In addition, tumor-derived

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 751392, 33 pages
http://dx.doi.org/10.1155/2014/751392

http://dx.doi.org/10.1155/2014/751392


2 BioMed Research International

Table 1: Chemoattractant GPCRs and ligands.

Expression Ligands Functions References
“Classical”
FPR

FPR1 Myeloid cells, lymphocytes
Tumor cells

Bacteria and host derived
peptides

Chemotaxis and activation
Tumor growth, invasion, angiogenesis [12, 13]

FPR2 Myeloid cells
Tumor cells

Bacteria and host derived
peptides

Chemotaxis and activation
Antitumor defense, tumor invasion [13]

FPR3 Monocytes, dendritic cells
Tumor cells

Synthetic and host derived
peptides

Chemotaxis and activation
Tumor invasion [13]

PAFR
Macrophages, polymorphonuclear
leucocytes, and various tissue cells
Tumor cells

PAF
Chemotaxis and activation
Tumor growth and metastasis;
inhibiting tumor angiogenesis

[14, 15]

C5aR
Neutrophils, monocytes, eosinophils,
basophils, dendritic cells, mast cells,
and various nonimmune cells
Tumor cells

C5a
Chemotaxis and activation
Tumor metastasis; opposite function
in angiogenesis

[16–18]

LTB4R

BLT1
Neutrophils, macrophages, T
lymphocytes
Tumor cells

LTB4 Chemotaxis and activation
Tumor growth [19]

BLT2
Most human tissues cells and
leukocytes
Tumor cells

LTB4 Chemotaxis and activation
Tumor growth, metastasis [19]

“Chemokine”
CCR

CCR1
Monocytes, neutrophils, T
lymphocytes, dendritic cells
Tumor cells

CCL3/4/6/7/8/9/10/14/15/16/23
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[20]

CCR2
Monocytes, basophils, T lymphocytes,
dendritic cells, NK cells, endothelial
cells
Tumor cells

CCL2/7/8/11/13/16
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[21, 22]

CCR3
Eosinophils, basophils, Th2
lymphocytes, mast cells
Tumor cells

CCL7/11/13/15/24/26/28 Chemotaxis and activation
Tumor growth, metastasis [23]

CCR4
Macrophages, monocytes, basophils, T
and B lymphocytes, dendritic cells, NK
cells, mast cells, platelets
Tumor cells

CCL2/4/5/17/22
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[24]

CCR5
Macrophages, T lymphocytes,
dendritic cells, NK cells
Tumor cells

CCL3/4/5/7/11/13/16
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[25, 26]

CCR6
Neutrophils, T and B lymphocytes,
dendritic cells, epithelial cells of some
tissues
Tumor cells

CCL20 Chemotaxis and activation
Tumor growth, metastasis [27, 28]

CCR7 T and B lymphocytes, dendritic cells
Tumor cells CCL19/21

Lymphoid tissue chemotaxis and
activation
Tumor growth, metastasis

[29, 30]

CCR8
Macrophages, Th2 lymphocytes,
endothelial cells
Tumor cells

CCL1/16 Chemotaxis and activation
Tumor metastasis [31, 32]

CCR9 T lymphocytes
Tumor cells CCL25

Small intestinal specific chemotaxis
and activation
Tumor growth, metastasis; inhibiting
tumor metastasis in some tumors

[33, 34]
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Table 1: Continued.

Expression Ligands Functions References

CCR10 T lymphocytes
Tumor cells CCL27/28

Skin-specific chemotaxis and
activation
Tumor growth, metastasis,
angiogenesis

[35, 36]

CXCR

CXCR1
Neutrophils, polymorphonuclear
leukocytes, endothelial cells
Tumor cells

CXCL6/8
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[37–39]

CXCR2
Neutrophils, basophils, T lymphocytes,
oligodendrocytes, endothelial cells
Tumor cells

CXCL1/2/3/5/6/8
Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis

[40, 41]

CXCR3
Macrophages, T lymphocytes, NK
cells, NKT cells, endothelial cells
Tumor cells

CXCL4/9/10/11

Chemotaxis and activation
Two variants CXCR3-A and CXCR3-B
have opposite function in tumor
progression

[42, 43]

CXCR4
Numerous cell types: hematopoietic
cells and stem cells
Tumor cells

CXCL12

Chemotaxis and activation
Maintenance of stem phenotype
Tumor growth, metastasis,
angiogenesis

[1, 44]

CXCR5 T and B lymphocytes
Tumor cells CXCL13

Chemotaxis and activation
Tumor growth, metastasis; inhibiting
tumor metastasis in some tumors

[45, 46]

CXCR6
T and B lymphocytes, NK cells, NKT
cells, plasma cells
Tumor cells

CXCL16

Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis; inhibiting tumor
migration in some tumors

[47]

CXCR7
T and B lymphocytes, dendritic cells,
endothelial cells, fetal hepatocytes
Tumor cells

CXCL11/12

Chemotaxis and activation
Tumor growth, metastasis,
angiogenesis; assisting with CXCR4 to
regulate tumor progression

[48–50]

CX3CR

CX3CR1
Monocytes, T and B lymphocytes,
mast cells, dendritic cells, NK cells
Tumor cells

CX3CL1
Chemotaxis and activation
Tumor growth, metastasis; inhibiting
tumor invasion in some tumors

[51, 52]

XCR

XCR1
Neutrophils, T lymphocytes, dendritic
cells
Tumor cells

XCL1/2 Chemotaxis and activation
Tumor cell growth, metastasis [53]

chemoattractants are mediators of leukocyte, in particular
macrophage (tumor-associated macrophages, TAMs), infil-
tration that may result in the persistence of chronic inflam-
mation in the tumor microenvironment together with a
vigorous angiogenesis. Therefore, chemoattractant GPCRs
are believed to play a crucial role in tumor progression via
signaling based on dissociation of trimeric G proteins in
response to ligands binding culminating in cell chemotaxis,
invasion, production of mediators promoting angiogenesis,
transactivation of growth factor receptors, such as epidermal
growth factor receptor (EGFR), and tumor cell metastasis.
(Figure 1 shows the signaling.)

A tumor has been recognized as a complicated “organ,”
other than a simple collection of relatively homogeneous
cancer cells, whose entire biology could be understood by
elucidating the autonomous properties of these cells. In
contrast, various types of host cells are known to contribute

in important ways to the biology of tumors, including
endothelial cells (ECs), pericytes, immune cells, cancer-
associated fibroblasts (CAFs), and stem and progenitor cells
of the tumor stroma [54]. The interaction between these
cells and their secreting factors results in an environment
which markedly affects tumor progression. (Figure 2 shows
the tumor.) Therefore, understanding the contribution of
GPCRs and their ligands to the complexity of the tumor
microenvironment is critical for the identification of novel
therapeutic targets.

2. GPCRs in Recruiting Tumor-Associated
Immune Cells

The infiltration of immune cells is a characteristic of the
tumor microenvironment, which is the basis for the presence
of chronic inflammation. Chemoattractants are characterized
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Figure 1: The signaling pathway of chemoattractant GPCRs. Chemoattractant GPCRs activated by ligands elicit a cascade of signal
transduction pathways involving G proteins, phospholipase C (PLC), phosphoinositide (PI) 3 kinases, protein kinase C (PKC), Ca2+, RAS,
and MAPKs to mediate leukocyte migration and activation. Chemoattractant GPCRs also play a crucial role in tumor progression upon
activation by their ligands culminating in cell chemotaxis, invasion, production of mediators promoting angiogenesis, and transactivation of
EGFR.
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Figure 2: Chemoattractant GPCRs in tumor microenvironment. A tumor has been recognized as a complicated “organ.” Various types of
tumor and host cells, including immune cells, fibroblasts, endothelial cells, and progenitor cells of the tumor stroma, contribute to the tumor
development, growth, metastasis, immune escape, and neovascularization.

by their ability to induce directional migration and activation
of leukocytes by stimulating specific GPCRs [2]. (Figure 1
shows the signaling.) The infiltrating immune cells play an
important role in shaping a tumor-promoting or tumor-
suppressive microenvironment [55, 56].

2.1. Tumor Infiltrating Tumor Suppressive Immune Cells. In
general, infiltration of antigen presenting dendritic cells
(DCs) into the tumor represents an early tumor-triggered
host immune response. In hepatocellular carcinoma (HCC),
tumor infiltrating DCs express the chemokine GPCRs, CCR1
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and CCR5. Tumor cell apoptosis induced by suicide genes
increases the number of DCs migrating into the draining
lymph nodes to generate a specific cytotoxic cell population
against HCC cells [57], although apoptotic tumor cells are
also believed to generate tolerogenic DCs. In addition to
CCR1 and CCR5, CCR6 is also commonly expressed by
circulating immature DCs (iDCs). In melanoma, the pro-
filing of GPCRs expressed by plasmacytoid DCs (pDCs)
showed that the only significantly elevated GPCR is CCR6,
which mediates the recruitment of pDCs from blood by the
chemokine ligand CCL20 produced by melanoma cells [58].
Other immune cells in tumor microenvironment may also
promote DC recruitment, such as Th9 cells, which increase
DC infiltration of the tumor mediated by CCR6/CCL20
interaction that generates CD8(+) cytotoxic T lymphocyte
(CTLs) responses and inhibit tumor growth [59]. After
capturing antigens, DCs undergo maturation and express
high levels of the chemokine GPCR CCR7 that enables DCs
to migrate to T cell zones in the draining lymph nodes that
produce the CCR7 ligands, CCL19 and CCL21. However, the
results of interaction between DCs and tumor cells could be
multifaceted based onCCR7/CCL19 orCCR7/CCL21 interac-
tion [60, 61]. These chemokines may decide the distribution
of immature or mature DCs within tumor tissues and gen-
erate opposing immunological consequences. For example,
in renal cell carcinoma, tumor cells secrete CCL20 to recruit
CCR6(+) immature DCs that mostly elicit tolerance, while,
in the tumor invasion margin, only CCL19 and CCL21 are
detected and they recruit CCR7(+) mature DCs as well as
CCR7(+) T cells to form clusters that provide local foci of
antitumor immune responses [62].

In addition to T cells, DCs may also cooperate with other
immune competent cells, such as nature killer (NK) cells, to
enhance antitumor effect. TLR9-activated pDCs could induce
CTLs cross primed against multiple B16 tumor antigens,
which is completely dependent on early recruitment and
activation ofNKcells. CCR5 expressingNKcells are recruited
by CCL3, CCL4, and CCL5 secreted by pDCs, while IFN-𝛾
was produced by NK cells stimulated by OX40L expressed on
pDCs [63]. Conversely, IL-18-primed NK cells produce high
levels of the iDC-attracting chemokines CCL3 and CCL4 to
recruit iDCs in a CCR5-dependent manner and induce the
production of CXCR3 and CCR5 ligands, CXCL9, CXCL10,
andCCL5, by iDCs to facilitate the subsequent recruitment of
CD8(+) T cells [64]. In breast cancer, NK cells take advantage
of their own production of IFN-𝛾 to enhance the secretion
of chemokines CXCL9, CXCL10, and CXCL11 by tumor cells,
which in turn accelerate the infiltration of CXCR3 expressing
NKcells into the tumor site [65].Hence, a positive feedback of
DCs,NK cells, and tumor cellsmay result in the enhancement
of antitumor immune responses. In addition, CCR5 and
CXCR3 expressing CD8(+) T cells recruited by DCs are
predominantly of the Th1 type that executes antitumor effect
and colocalizes withmacrophages and neutrophils to amplify
the cell-mediated immune responses [56].

2.2. Tumor Infiltrating Immune Suppressive Cells. Immune
suppressive cells recruited into tumor microenvironment
subvert the host defense and create a microenvironment

favoring tumor escape. These cells include myeloid-derived
suppressor cells (MDSCs), TAMs, and regulatory CD4(+) T
cells (Tregs). For example, in a melanomamodel, when CTLs
are injected intravenously into tumor-bearing mice, the cells
are detected in the tumor as early as on day 1, peaking on day
3, and inhibit tumor growth. However, the antitumor effect is
soon diminished with accumulation of MDSCs in the tumor,
which outnumber CTLs by day 5. MDSCs produce nitric
oxide, arginase I, and reactive oxygen species that inhibit the
proliferation of antigen-specific CD8(+) T cells and reduce
tumor cell killing. In CCR2−/− mice, the accumulation
of MDSCs is significantly reduced, indicating that MDSC
infiltration in the tumor is dependent on the chemokine
GPCR CCR2 and its ligands, mainly CCL2 produced in the
tumor [66].

Different T cell types appear in tumors at different
stages of progression. In human ovarian cancer, recruitment
of high numbers of Th1 cells was observed in stage II
tumors, whereas activated Tregs along with high numbers
of monocytes/macrophages and myeloid DCs (mDCs) were
observed in disseminated tumors (stages III-IV). All tumor
cells,monocytes/macrophages, andmDCs produceCCL22 to
recruit Tregs via theGPCRCCR4.The specific recruitment of
Tregs results in immune suppression in the advanced stages
of ovarian cancer [67]. The paradox that early stage tumors
are inhibited by infiltrating antitumor immune cells which is
reversed by suppressive Tregs through CCR4/CCL22 interac-
tion is also observed in myeloma [68].Thus, chemokines and
GPCRs play a crucial role in regulating pro- and antitumor
responses by recruiting different types of immune cells
(Table 2).

2.2.1. Tregs. Treg is a CD4(+)CD25(+)FoxP3(+) T cell sub-
type. Treg expresses chemokine GPCR CCR4 and responds
to the ligands CCL1 and CCL22 to accumulate in tumors.
The degree of Treg infiltration is correlated with the prog-
nosis of tumor patients [108, 110, 135]. A similar prog-
nostic value was also obtained by the ratio of CD8(+)
T cell/CCR4(+) Treg [136]. In melanoma, deletion of
CD45RA(−)FoxP3(hi)CD4(+) Tregs (effector Tregs) using
anti-CCR4 antibody significantly augmented CD8(+) T cell
infiltration in the tumor and unmasked a nascent antitumor
host response [137]. The recruitment of Tregs into the tumor
microenvironment depended on the presence of CD8(+) T
cells that produce ligands for CCR4 [138]. Therefore, the
balance of infiltrating CCR4(+) Tregs and CD8(+) T cells
in tumor tends to be a seesaw. Tregs can also interact with
other cells in the tumor microenvironment. For instance, in
a highly metastatic breast cancer model, only a proportion
of CCR4(+) tumor cells in the primary tumor establish lung
metastasis. Implanted orthotopic primary tumors “remotely”
stimulate the expression of CCL17 and CCL22 in the lungs,
which attract both CCR4(+) Tregs and tumor cells. CCR4(+)
Tregs protect CCR4(+) tumor cells from being attacked by
antitumor host immune cells. In fact, in the absence of
CCR4(+) Tregs, CCR4(+) tumor cells disseminated into the
lung are efficiently eliminated by NK cells, because CCR4(+)
Tregs directly kill NK cells using beta-galactoside-binding
protein [139]. Interestingly, in return, NK cells themselves
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Table 2: Chemoattractant GPCRs associated with stromal cell infiltration.

GPCRs Tumor types
Immune cells

Dendritic cells

CCR1 Hepatocellular carcinoma [57]
CCR5 Hepatocellular carcinoma [57], ovarian cancer [69]

CCR6
Breast cancer [70, 71], colorectal cancer and lung cancer [72], lymphoma [73], melanoma
[58, 72], lymphocyte-rich gastric cancer [74], renal cell carcinoma [62], thyroid cancer
[75]

CCR7 Breast cancer [76], renal cell carcinoma [62]

CXCR1/2 Colorectal cancer [77–79], gastric cancer [79], hepatocellular carcinoma [78], pancreatic
cancer [78]

Myeloid-derived suppressor cells
CCR2 Basal cell carcinomas [80], melanoma [66]
CXCR2 Colitis-associated cancer [81]
CXCR4 Gastric cancer [82], ovarian cancer [83]

Tumor-associated macrophages

PAFR Melanoma [84]

CCR2
Breast cancer [85], cervical cancer [86], colitis-associated cancer [87], lymphoma [88],
nasopharyngeal carcinoma [89], oral cancer [90], prostate cancer [91], pancreatic cancer
[92], thyroid cancer [93]

CCR4 Lung cancer [94]
CCR5 Hepatocellular carcinoma [95], nasopharyngeal carcinoma [89]
CXCR3 Breast cancer [42]
CX3CR1 Breast cancer [96], glioma [97]

Regulatory T cells

CCR4 Breast cancer [98], cervical cancer [99], Hodgkin lymphoma [100], gastric cancer [101],
glioma [102], melanoma [103]

CCR5 Colorectal cancer [104], lymphoma [105], pancreatic cancer [106], renal cell carcinoma
[107]

CCR6 Breast cancer [108], colorectal cancer [109], hepatocellular carcinoma [110], Hodgkin
lymphoma [111], renal cell carcinoma [107]

CCR7 Melanoma [112], ovarian cancer [113]
CCR10 Ovarian cancer [35]
CXCR1 Lung cancer, mesothelioma, melanoma [114]
CXCR3 Renal cell carcinoma [107]

CXCR4 Breast cancer [115], B cell lymphoma [116], hepatocellular carcinoma [117], lung cancer
[118], glioma [119], ovarian cancer [120, 121]

CXCR6 Nasopharyngeal carcinoma [122], renal cell carcinoma [107]
Stromal cells

Mesenchymal stem cells

FPR2 Ovarian tumor [123]
CCR2 Breast cancer [124], glioma [125], lymphoma [88]
CXCR1 Glioma [126, 127]
CXCR2 Kidney cancer [128], glioma [127]
CXCR4 Breast cancer [129], gastric cancer [130], glioma [125, 131, 132]
CXCR6 Glioma [132], prostate cancer [133]
CX3CR1 Colorectal cancer [134]

also may attract Tregs through the CCR4/CCL22 interaction.
In a Lewis lung cancer (LLC) implantation model, mouse
lungs bearing LLC secrete CCL22 to recruit Tregs to suppress
the proliferation of endogenous CD4(+)CD25(−) cells and
the only cell type in the lung to produce CCL22 is NK
cells [140]. CCR4/CCL22 even induces Tregs to selectively
infiltrate into a particular site in the tumor, such as the area of
lymphoid aggregateswhere Tregs are activated and proliferate
in response to tumor-associated antigens presented by DCs.

However, this process does not occur in the tumor bed
[98, 141]. In addition, there are other GPCRs and ligands
that may recruit Tregs, such as CCR5/CCL5 in colorectal
cancer (CRC) and pancreatic cancer [104, 106], CCR6/CCL20
in HCC and breast cancer [108, 110], and CCR10/CCL28 in
ovarian cancer [35], while CXCR3 and CXCR6 are expressed
by Tregs infiltrating renal cell carcinoma [107]. Since Tregs
are believed to be one of the major suppressive host cells
that interfere with antitumor immune response, targeting
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GPCRs should be one of the effective measures to diminish
Treg infiltration of the tumor environment thereby restoring
tumor immunity.

2.2.2. TAMs. In addition to the complicated interaction
between Tregs and other tumor suppressing immune cells in
themicroenvironment, there are also other tumor supporting
immune cells as important constituents. In a mouse CRC
model, CCR6(+) Tregs are recruited into the tumor by
responding to CCL20 secreted not only by tumor cells
but also by TAMs. After targeted deletion of TAMs, Treg
recruitment was abrogated with reduced tumor growth [109].

Macrophages are a major tumor infiltrating immune
cell type that may affect tumor growth by either anti- or
protumor effects [142]. Blood-derived monocytes infiltrate
tumor tissues and differentiate into macrophages followed by
further polarization into M1 or M2 phenotype, which differs
in their patterns of cytokine secretion and biological function
[143]. M1 macrophages mediate tumor suppression through
type I cytokine production and tumor antigen acquisition and
presentation [142, 144], whereas M2 macrophages promote
tumor progression by producing type II cytokines [145].
Unfortunately, TAMs largely are of the M2 phenotype and
promote the progression of almost all known solid tumors.
Tumors produce many cytokines and other mediators that
propel TAMs into the M2 phenotype [146]. Chemoattractant
GPCRs are critical for TAM infiltration in the tumor, includ-
ing chemokine GPCRs and the classical GPCR PAFR [84].
In certain tumor models, phagocytosis of apoptotic tumor
cells by macrophages may induce M2 polarization, with the
production of anti-inflammatory mediators [84, 147]. The
main GPCR and ligand favoring TAM accumulation are
CCR2/CCL2,which occurs in numerous tumors, such as pan-
creatic cancer, cervical cancer, papillary thyroid cancer, and
prostate cancer [86, 91–93]. Some tumors also secrete other
CCR2 ligands to recruit TAMs, such as HBD-3 in oral can-
cer [90]. In breast cancer, CCR2/CCL2 interaction recruits
macrophages into the lung, where the cells “create” an appro-
priate microenvironment to facilitate tumor cell lodging and
the development ofmetastatic foci [148]. FPR2 is also aGPCR
expressed mainly on macrophages and neutrophils with the
capacity to respond to bacterial chemotactic peptides [12].
In the mouse LLC model, tumors implanted subcutaneously
growmore rapidly inmice deficient in Fpr2, the orthologue of
human FPR2, and show significantly increased infiltration of
TAMswithM2 polarization.Macrophages derived from Fpr2
deficient mice express higher levels of the chemokine GPCR,
CCR4, which in cooperation with CCR2 mediate a marked
increase in macrophage chemotaxis in response to CCL2. In
addition, macrophages from Fpr2 deficient mice are more
prone to M2 polarization after stimulation with LLC-derived
supernatant. In contrast, in the presence of Fpr2, some
macrophages develop an M1 phenotype after conditioning
with LLC supernatant. Therefore, Fpr2 appears to sustain
M1 differentiation of macrophages which participate in anti-
LLC host responses [94]. Similarly, mice deficient in the
chemokine GPCR CXCR3 exhibit polarization of TAMs into
M2 phenotype in breast cancer [42]. Another chemokine
GPCR, CX3CR1, and its ligand, CX3CL1, recruit TAMs and

sustain the survival of TAMs to promote tumor metastasis
[96, 149]. Therefore, chemoattractant GPCRs, in addition to
mediating TAM recruitment, also favor TAM polarization to
theM2 phenotype in response to tumormicroenvironmental
factors that promote tumor growth.

2.2.3.MDSCs. Another type of immunosuppressive cells that
shape the protumor microenvironment is MDSCs, which
consist of subsets of immature myeloid cells with either
monocytic or granulocytic morphology [150]. MDSCs are
recruited into tumors via the chemokine GPCRs CCR2,
CXCR2, or CXCR4 and are believed to promote tumor
progression, such as facilitating metastasis in CRC [151,
152]. MDSCs exert their protumor activity by suppressing
antitumor effectors, as by inhibiting T cell function via iNOS
and arginase [80, 153, 154]. Deletion of CCR2(+) MDSCs
using a toxin-mediated ablation strategy increased recruit-
ment of activated CD8(+) T cells into the tumor and thus
restored antitumor defense [150]. MDSCs are also capable
of sustaining a protumor microenvironment by recruiting
Tregs via chemoattractant GPCRs and ligands. For instance,
MDSCs release CCL3, CCL4, and CCL5, which activate
CCR5 expressed by Tregs and result in their recruitment
in both in vitro and in vivo experimental models [105]. In
addition to recruiting Tregs, a group of CD11b(+)CCR8(+)
myeloid cells similar to MDSCs recruited by CCR8/CCL1
interaction in urothelial and renal carcinomas also “educate”
tumor infiltrating T cells to express FoxP3, a marker for Tregs
[31]. Thus, MDSCs have been recognized as an important
component in the tumor microenvironment that are regu-
lated by chemoattractant GPCRs and ligands. MDSCs also
utilize the GPCR/ligand interactions to amplify protumor
host response.

2.2.4. Other Tumor Infiltrating Cells. In addition to immune
cells, stromal cells in the tumor microenvironment also
take part in the regulation of tumor growth. Mesenchymal
stem cells (MSCs) are one of the major components in
the tumor stroma and are believed to be the precursors of
CAFs [155, 156]. MSCs may be recruited into the tumor
through FPR2, CCR2, CXCR1, CXCR2, CXCR4, CXCR6,
and CX3CR1 depending on the types and locations [125,
126, 128, 133]. Tumor-resident MSCs are often constantly
exposed to immune cells and inflammatory cytokines in
the microenvironment. They may have acquired functions
distinct from normal tissue MSCs that alter the balance
of host tumor interaction [88]. For example, compared
with bone marrow MSCs, MSCs isolated from spontaneous
mouse lymphomas (L-MSCs) promote tumor growth in
association with recruitment of large numbers of CD11b(+)
Ly6C(+) monocytes, F4/80(+) macrophages, and CD11b(+)
Ly6G(+) neutrophils into the tumor. Depletion of mono-
cytes/macrophages, but not neutrophils, completely abol-
ishes the tumor promoting activity of L-MSCs. Such tumor
infiltrating monocytes/macrophages are recruited by CCL2
produced by L-MSCs and CCR2 expressed on TAMs [88].
Similarly, CAFs are associated with immune suppressive
microenvironment. In Hodgkin lymphoma and cutaneous
T cell lymphoma, CAFs secrete the chemokines CCL11 and
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CCL26 that recruit CCR3(+) T lymphocytes into the tumor
and produce high levels of IL-4, a signature of a Th2-
dominant microenvironment [157].

In conclusion, GPCRs and ligands are critical for the
recruitment of a variety of immune and nonimmune cells
into the tumor microenvironment where these cells interact
to establish host responses, which, unfortunately, mostly tip
the balance to protumor elements.

3. The Role of Chemoattractant GPCRs
Expressed by Tumor Cells

While chemoattractant GPCRs contribute to tumor growth
by promoting the recruitment of protumor stromal cells and
angiogenesis, many tumor cells also express a variety of
GPCRs, which, by responding to autocrine and/or paracrine
agonists produced in the microenvironment, directly stimu-
late tumor cell proliferation and tumor spread and expansion
(Table 3).

In anaplastic large cell lymphomas, the CCR3/CCL11
interaction promotes tumor cell proliferation and inhibits
apoptosis through ERK1/2, Bcl-xL and the production of
survivin [192]. Similarly, through an AKT signaling pathway,
CCR7 and its ligands CCL19 and CCL21 induce squamous
cell carcinoma of the head and neck growth in vitro and
in vivo [230]. In addition, CCR6/CCL20 interaction in
endometrial adenocarcinoma, CXCR1/2/CXCL7 interaction
in clear cell renal cell carcinoma, CXCR2/CXCL8 inter-
action in nasopharyngeal carcinoma, and CXCR6/CXCR16
interaction in HCC are reported to promote tumor cell
growth [3, 27, 37, 265]. Hypoxia, which occurs during tumor
expansion, induces the production of GPCR ligands that
promote tumor cell proliferation in an autocrine manner. In
cervical carcinoma, hypoxia stimulates tumor cells to express
high levels of CXCR1/2 and CXCL8 that respond to ligands
in the microenvironment by proliferating [246]. Actually,
numerous chemoattractant GPCRs, such as CCR1, CCR5,
CXCR5, CXCR7, and PAFR, are expressed by various types of
tumor cells and are implicated in tumor growth [1]. In the case
of the same GPCR, CXCR3, its two variants have opposite
functions. CXCR3-A promotes cells growth but CXCR3-B
mediates growth-inhibitory signals and induces apoptosis in
various tumors [270].

In addition to tumor cells, stromal cells in the microen-
vironment also secrete GPCR ligands that stimulate the
receptors on tumor cells in a paracrine manner which may
represent amore important yet complicated stimulating loop.
This is exemplified by observations in human glioma inwhich
CXCR4/CXCL12 interaction favors an autocrine or paracrine
loop for tumor cell proliferation [314, 315]. CXCR4/CXCL12
growth stimulating effects were also detected in glioma
stem cells via an AKT-mediated prosurvival and self-renewal
pathway. Highly malignant human glioblastoma cells (GBM)
express a classical chemoattractant GPCR, FPR1, which
recognizes a ligand, Annexin A1, released by necrotic GBM
cells that mediates the proliferation of live GBM cells to
increase their invasiveness and the production of angio-
genic factors vascular endothelial growth factor (VEGF) and
CXCL8 (IL-8), which stimulate VEGF receptor (VEGFR) and

CXCR1/CXCR2 on vascular ECs to promote their migration
and formation of new vasculature [316, 317]. It is interesting
to note that FPR1 in GBM cells does not act alone; instead,
the GPCR transactivates EGFR which accounts for part of
the GBM growth stimulating activity of FPR1. GBM cells are
able to maximally exploit the supportive mediators in the
microenvironment to their advantage [1, 318]. By stimulating
GPCR, tumor cells may even change the phenotype of
neighboring stromal cells. Breast tumor cells secrete CCL20
to activate the ERK1/2/MAPK pathway in surrounding “nor-
mal” breast epithelial cells via CCR6 and promote their
malignant transformation [319].

CAFs have been recognized as important regulators of
tumor initiation by secreting CXCL12 to activate CXCR4 on
breast cancer cells and stimulate tumor growth [320]. Studies
have also shown that, after activation by CXCL12, breast
cancer cells secrete another chemokine CCL20 that activates
CCR6 expressed by tumor cells and facilitates their prolifera-
tion [321], while, in Hodgkin lymphoma, CAFs from tumor-
involved lymph nodes cocultured with Reed-Sternberg cells
produce CCL5, which activates CCR5 on tumor cells to
stimulate tumor growth [205]. Multiple myeloma (MM) cells
and osteoclasts (OCs) form yet another example of tumor
promoting activity of GPCR/ligand interactions. MM growth
in the bone marrow niche depends on bone resorption and
interaction with active OCs [322, 323]. MM cells secrete
CCL3 to activate OCs through its receptor CCR1 [324].
CCR1/CCL3 interaction inhibits the function of osteoblasts
(OBs), resulting in the loss of OB/OC balance, which could
facilitateMMgrowth [325]. Also, OCs in the tumormicroen-
vironment sustainMM cell proliferation through production
of chemokine that activate CCR2 on tumor cells [187]. These
pathways culminate in MM outgrowth.

Based on these observations, it is now clear that chemok-
ine GPCRs expressed by tumor cells and autocrine or
paracrine ligands form a formidable interaction in the mi-
croenvironment that orchestrates the crisscross interaction
between tumor cells and stromal cells stimulating further
growth of the tumors.

4. The Role of Chemoattractant GPCRs in
Tumor Metastasis

Metastasis is the major cause of cancer death. In order for
cancer cells to metastasize, the cells should acquire a motile
phenotype and be able to detach from the primary tumor
mass to degrade basementmembrane and intravasate into the
blood or lymph vessels. After trafficking in the blood or lym-
phatic vessels, tumor cells tend to form emboli extravasating
into distant organs or lymph nodes [1, 326]. Nearly each step
ofmetastasis is heavily dependent on the tumormicroenviro-
nment and chemoattractant GPCRs are active participants in
the processes.

A historical discovery of the role of chemoattractant
GPCR/ligand interactions in promoting cancer metastasis
was reported in 1998, in which the chemokine CCL2 (MCP-
1) was shown to mediate kidney specific metastasis of a
subpopulation of a murine experimental lymphoma [327].
This was followed by a more detailed study of several
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Table 3: The functions of chemoattractant GPCRs expressed by tumor cells.

GPCRs Tumor Function References
FPR

FPR1
Colorectal cancer Invasion [158]
Gastric cancer Invasion [159]
Glioblastoma Growth, invasion, vasculogenesis, angiogenesis [160–163]

FPR2 Gastric cancer Invasion [159]
Ovarian cancer Invasion [164]

FPR3 Gastric cancer Invasion [159]

PAFR
Breast cancer Migration, proliferation, angiogenesis [165]
Melanoma Metastasis [166]
Ovarian cancer Proliferation, invasion [167]

C5aR Bile duct cancer, colorectal cancer Invasion [168]
Non-small-cell lung cancer Metastasis [169]

LTB4R
BLT1 Colorectal cancer Proliferation [170]

BLT2

Bladder cancer Metastasis, antiapoptosis [171, 172]
Breast cancer Metastasis [173]
Pancreatic cancer Growth, migration [174, 175]
Prostate cancer Antianoikis, antiapoptosis [176, 177]
Ovarian cancer Metastasis [178]

CCR

CCR1

Breast cancer Invasion [179]
Glioma Proliferation, tumorigenesis [180]
Hepatocellular carcinoma Migration, invasion [181, 182]
Oral squamous cell carcinoma Migration [183]
Ovarian cancer Invasion [184]

CCR2

Bladder cancer Migration, invasion [185]
Breast cancer Migration, proliferation, antiapoptosis [186]
Hepatocellular carcinoma Migration, invasion [181]
Multiple myeloma Growth [187]
Ovarian cancer Invasion, adhesion, proliferation [188, 189]
Prostate cancer Proliferation, migration, invasion [190, 191]

CCR3

Lymphoma Growth [192]
Glioma Proliferation, tumorigenesis [180]
Oral squamous cell carcinoma Migration, invasion [183]
Ovarian cancer Invasion, proliferation [184, 189]
Renal cell carcinoma Growth, dissemination [193]

CCR4

Breast cancer Growth, metastasis, angiogenesis [139, 194]
Colorectal cancer Migration [195]
Gastric cancer Migration [196]
Melanoma Metastasis [197]
Squamous cell carcinoma of the head and neck Metastasis [198]

CCR5

Breast cancer Proliferation, metastasis [25, 199–202]
Colorectal cancer Growth [203]
Gastric cancer Metastasis [204]
Glioma Proliferation, tumorigenesis [180]
Hodgkin lymphoma Growth, metastasis [205]
Oral cancer Migration [206]
Ovarian cancer Invasion, proliferation [189]
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Table 3: Continued.

GPCRs Tumor Function References

CCR6

Colorectal cancer Proliferation, metastasis [207, 208]
Endometrial adenocarcinoma Proliferation [27]
Hepatocellular carcinoma Metastasis [209, 210]
Non-small-cell lung cancer Metastasis [211]
Pancreatic cancer Invasion [212–214]
Squamous cell carcinoma of the head and neck Metastasis [215, 216]

CCR7

Breast cancer Metastasis, antianoikis [217, 218]
Colorectal cancer Metastasis [219, 220]
Melanoma Growth, metastasis, tumorigenesis [221, 222]
Non-small-cell lung cancer Proliferation, antiapoptosis, metastasis [29, 223–226]
Oral squamous cell carcinoma Metastasis [227]
Pancreatic ductal adenocarcinoma Metastasis [228]
Prostate cancer Metastasis [229]
Squamous cell carcinoma of the head and neck Proliferation, antiapoptosis, metastasis, adhesion [230–236]
T cell lymphoma Dissemination [237]

CCR8 Melanoma, breast cancer, leukemia Metastasis [32]

CCR9

Breast cancer Migration, invasion [238]
Colorectal cancer Inhibiting metastasis [239]
Ovarian cancer Migration, invasion [240]
Pancreatic cancer Proliferation, invasion [34, 241]
Prostate cancer Antiapoptosis [242]

CCR10 Melanoma Growth, metastasis [243, 244]
CXCR

CXCR1

Breast cancer Stem cell self-renewal [245]
Cervical carcinoma Proliferation [246]
Colorectal cancer Metastasis, antiapoptosis, angiogenesis [247]
Gastric cancer Invasion [248]
Glioblastoma Growth, migration, invasion [249, 250]
Melanoma Growth, migration, invasion, angiogenesis, tumorigenesis [251–253]
Prostate cancer Growth, angiogenesis [254]
Renal cell carcinoma Growth, angiogenesis [37]
Thyroid carcinoma Metastasis [255]

CXCR2

Breast cancer Migration, invasion, stem cell self-renewal [245, 256, 257]
Cervical carcinoma Proliferation [246]
Colorectal cancer Proliferation, migration, invasion, angiogenesis [258–261]
Gastric cancer Metastasis [262, 263]
Glioblastoma Growth, migration [249, 264]
Melanoma Growth, migration, invasion, angiogenesis, tumorigenesis [251–253]
Nasopharyngeal carcinoma Growth [265]
Non-small-cell lung cancer Growth, metastasis, angiogenesis [266, 267]
Ovarian cancer Growth, angiogenesis [268]
Pancreatic cancer Invasion, angiogenesis [269]
Prostate cancer Growth, angiogenesis [254]
Renal cell carcinoma Growth, angiogenesis [37]
Thyroid carcinoma Metastasis [255]

CXCR3

Breast cancer Metastasis; inhibiting growth [270–273]
Colorectal cancer Metastasis [274]
Glioma Growth [275, 276]
Lung adenocarcinoma Metastasis [226]
Melanoma Migration [277]
Myeloma Inhibiting/promoting proliferation and apoptosis [43]
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Table 3: Continued.

GPCRs Tumor Function References
Ovarian cancer Growth, metastasis [278]
Prostate cancer Metastasis [279]
Renal cell carcinoma Growth, metastasis [280, 281]

CXCR4 At least 23 haematopoietic and solid cancers Growth, metastasis, angiogenesis [1, 44]

CXCR5

Breast cancer Metastasis [282]
Colorectal cancer Growth, migration [283]
Neuroblastoma Inhibiting/promoting metastasis [45, 284]
Prostate cancer Proliferation, invasion, migration, adhesion [285–288]

CXCR6

Colorectal cancer Growth, migration, invasion [289]
Hepatocellular carcinoma Growth, metastases, angiogenesis [3]
Melanoma Stem cell self-renewal [290]
Nasopharyngeal carcinoma Metastasis [291]
Pancreatic ductal adenocarcinoma Invasion [292]
Prostate cancer Proliferation, metastasis [293–295]
Renal cell carcinoma Inhibiting migration [296]

CXCR7

Breast cancer Inhibiting invasion; growth, angiogenesis [297]
Cervical carcinoma Growth, adhesion [298]
Glioma Growth, migration, sphere and tube formation [49, 299]
Hepatocellular carcinoma Growth, metastasis, angiogenesis [300, 301]
Lymphoma Growth, adhesion [298]
Nasopharyngeal carcinoma Metastasis [291]
Neuroblastoma Inhibiting growth; metastasis [50, 302]

CX3CR

CX3CR1

Epithelial ovarian carcinoma Proliferation, migration, adhesion [303]
Glioma Inhibiting invasion [304]
Neuroblastoma Migration [305]
Pancreatic ductal adenocarcinoma Migration [306, 307]
Prostate cancer Metastasis [308–310]
Renal cell carcinoma Metastasis [311]

XCR

XCR1 Epithelial ovarian carcinoma Proliferation, metastasis [312]
Oral squamous cell carcinoma Proliferation, migration, invasion [313]

human cancer cell lines including breast and lung cancer
cells which metastasized into distant organs in nude mice by
using several chemokine GPCRs.These findings enriched the
“seed” and “soil” paradigm of cancer metastasis by including
chemoattractant GPCRs as the requisite for tumor cells as
qualified “seeds” and a ligand producing distant organ or
draining lymph nodes as suitable “soil” [328]. Since then,
studies of the role of chemoattractant GPCRs and ligands
in cancer metastasis have become a burgeoning research
field and many malignant tumors have been shown to utilize
a variety of GPCR/ligand interactions for metastasis. For
example, in lung cancer, hypoxia induces the expression of
CCR7 by tumor cells that increases cell invasiveness and
eventual lymph node metastasis [29]. Hypoxia also promotes
lymph node metastasis of breast cancer by increasing the
expression of CCR5 on tumor cells and the ligand CCL5 in
lymph nodes via the transcription factor hypoxia-inducible
factor- (HIF-) 1𝛼 [25]. In prostate cancer and pancreatic
ductal adenocarcinoma, cancer metastasis is associated with

CX3CR1 on tumor cells and the ligand CX3CL1 at metastasis
site [306, 308]. The sources of chemoattractants in tumor
microenvironment are from both tumor and stromal cells.
In prostate cancer, hypoxia-preconditioned MSCs produce
CCL21 to attract tumor cells expressing CCR7 which is
associated with enhanced lymph node metastasis of the
tumor [229]. Similarly, under hypoxia, MSCs promote breast
cancermetastasis throughCXCR3/CXCL10 interaction [271].

Chemoattractant GPCRs and their ligands reportedly
involved in enhanced tumor metastasis are listed in Table 4.
Recently, cancer stem cells (CSCs) have been shown to
account for most of the cancer metastasis. Interestingly,
chemoattractant GPCRs participate in the maintenance of
the metastatic property of CSCs by forming an autocrine
loop. In ovarian cancer, the invasiveness of CD133(+) CSCs
is enhanced by the chemokine CCL5, which activates CCR3
and CCR5 expressed by the cells to increase matrix metal-
loproteinase (MMP) 9 secretion [184]. A number of studies
that use exogenous chemokines to induce cell invasion are
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Table 4: Chemoattractant GPCRs associated with tumor metastasis.

Tumor type GPCRs Ligands Metastatic sites

Bladder cancer
BLT2 LTB4 Lung [171]
CCR2 CCL2 Lung [329]
CXCR6 CXCL16 Perineural and lymphovascular invasion [330]

Breast cancer

BLT2 LTB4 Lung [173]
CCR2 CCL2 Lung [85, 148], bone [148]
CCR4 CCL17/22 Lung [139, 194, 331]
CCR5 CCL5 Lung [200, 201], lymph node [25, 332]
CCR6 Pleura [333]

CCR7 CCL19/21 Lymph node [218, 334–337]
Skin [333]

CCR8 CCL1 Lymph node [32]
CCR9 CCL25 Lymph nodes and gastrointestinal tract [238]
CXCR1 CXCL8 Bone [338, 339]
CXCR2 Lung [340], bone [341]

CXCR3 CXCL9 Lung [342]
CXCL10 Bone [343], lung [344]

CXCR4 CXCL12 Lymph node [328, 336, 337, 345], bone [346–348], lung [328, 346, 349],
liver [333]

CXCR5 CXCL13 Lymph node [282]
CXCR6 CXCL16 Lymph node [350]
CXCR7 CXCL12 Lung, greater omentum, and lymph nodes [351]
CX3CR1 Brain [333]

Cervical cancer CXCR4 CXCL12 Lymph node [352]
CXCR4/7 CXCL12 Lymph node [353, 354]

Colorectal cancer

CCR1 CCL7/9/15 Liver [355–357]

CCR2 CCL2 Liver [151, 358], lung [359]
CCL7 Liver [356]

CCR3 CCL7 Liver [356]
CCR5 CCL5 Liver and lung [203]
CCR6 CCL20 Liver [207, 360]
CCR7 CCL21 Lymph node [219, 220, 361]

CXCR1/2 Liver [247]

CXCR2 CXCL1 Lymph node [261], liver [362]
CXCL8 Skin [363]

CXCR3
CXCL9 Lymph node [364]
CXCL10 Lymph node [364], lung [365]
CXCL11 Lung [365]

CXCR6 CXCL16 Liver [289, 366]
CXCR4 CXCL12 Liver [367–370], lymph node [371, 372], brain [373]

Esophageal cancer

CCR7 CCL21 Lymph node [374–376]
CXCR2 Lymph node [377]

CXCR4 CXCL12 Lung [378, 379], liver [378, 379], lymph node [378, 380], peritoneum [379],
retroperitoneum [379]

Gastric cancer

FPR1/2/3 Annexin A1 Peritoneum [159]
CCR2 CCL2 Lymph node [381]
CCR4 CCL17 Lymph node, lung, and bone [194]
CCR5 CCL5 Lymph node [204]
CCR7 Lymph node [30, 382, 383]
CXCR2 CXCL1 Lymph node [262]
CXCR4 CXCL12 Lymph node [382, 384–387], peritoneum [388–390], liver [387]
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Table 4: Continued.

Tumor type GPCRs Ligands Metastatic sites

Glioma CXCR4/7 CXCL12 Bone marrow [299]
Lymph node, distant organs [391]

Head and neck squamous cell carcinoma

CCR4 CCL22 Lymph node [198]
CCR6 CCL20 Lymph node [216, 392]
CCR7 CCL19/21 Lymph node [227, 230–232, 393]
CXCR2 CXCL1/8 Lymph node [394, 395]
CXCR4 CXCL12 Lymph node [393, 396], lung [397, 398]
CXCR5 CXCL13 Bone [399]
XCR1 XCL1 Lymph node [313]

Hepatocellular carcinoma

CCR7 Intrahepatic metastasis, lymph node [400]
CXCR4 CXCR12 Lung [401], bone [402, 403], lymph node [404]
CXCR6 CXCL16 Lung [3]
CXCR7 CXCL12 Lung [300, 405]

Lymphoma CCR7 CCL21 Lymph node [237]

Leukemia CCR8 CCL1 Lymph node [32]
CXCR4 CXCL12 Extramedullary sites (liver, kidney, spleens, and peripheral blood) [406]

Melanoma

FPR1/2/3 Annexin A1 Lung [407]
PAFR PAF Lung [166, 408, 409]
CCR2 CCL2 Lung [410]
CCR3 Brain [411]
CCR4 CCL22 Brain [197, 411]
CCR5 CCL4 Lung [412, 413]
CCR7 CCL21 Lymph node [221, 222, 244, 414], liver [415]
CCR8 CCL1 Lymph node [32]
CCR9 CCL25 Small intestinal [416, 417]
CCR10 CCL27 Skin [243, 244]
CXCR2 CXCL8 Lung [418]
CXCR3 CXCL10 Lymph node [419, 420], bone [421]
CXCR4 CXCL2 Lung [244, 422–424]

Neuroblastoma

CXCR3 CXCL10 Bone marrow [425]
CXCR4 CXCL12 Bone [426–428], liver [429, 430], kidney [430], bone marrow [428, 430]
CXCR5 CXCL13 Bone marrow [284]
CXCR4/7 CXCL12 Bone marrow [302]
CX3CR1 CX3L1 Bone marrow [305]

Non-small-cell lung cancer

C5aR Lymph node [169]
CCR4 CCL22 Bone [431]
CCR6 CCL20 Adrenal specific metastasis [211]
CCR7 CCL19/21 Lymph node [29, 226, 432]

CXCR2 CXCL5
Hilar and mediastinal lymph nodes, chest wall, and contralateral lung;
extrathoracic distant metastases (para-aortic lymph nodes, liver, adrenal
glands, kidneys, spleen, and diaphragm) [266]

CXCR4 CXCL12 Lungs, liver, bone marrow, adrenal glands [433], pleural [434], brain
[433, 435]

CX3CR1 Brain and liver [436]

Osteosarcoma

CCR7 CCL21 Lymph node [334]
CXCR3 CCL9/10/11 Lung [437]
CXCR4 CXCL12 Lung [438]
CXCR7 CXCL12 Lung [439]
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Table 4: Continued.

Tumor type GPCRs Ligands Metastatic sites

Ovarian carcinoma

BLT2 Diaphragm, intestine, and mesentery (intraperitoneal dissemination) [178]
CCR3 CCL5 Liver, bowel, and spleen [184]
CCR9 CCL25 Small intestinal [440]
CXCR4 CXCL12 Pelvic [441], lymph node [442, 443], peritoneum [444]
CXCR6 CXCL16 Lymph node [443]
XCR1 XCL1/2 Diaphragm, peritoneal wall, colon, spleen, and liver [312], peritoneum [312]

Pancreatic cancer
CCR2 CCL2 Liver [92, 445], peritoneal [445]
CCR7 CCL21 Lymph node [228, 446]

CXCR4/7 CXCL12 Liver [447, 448], lung [448], lymph node [449]

Prostate cancer

CCR2 CCL2 Bone [450]
CCR7 CCL21 Lymph node [229]

CXCR1/2 CXCL8 Lymph node [451]
CXCR3 CXCL4/10 Lymph node, liver, lung, adrenal [279]
CXCR4 CXCL12 Bone [133, 452, 453]
CXCR5 CXCL13 Bone [288]
CXCR6 CXCL16 Bone [133, 294, 453], liver [294]
CX3CR1 CX3CL1 Bone [310]

Renal cell carcinoma CCR1/3 CCL15 Bone [454]
CCR5 CCL3 Lung [326]

Thyroid papillary cancer

CCR7 CCL21 Lymph node [455, 456]
CXCR1/2 CXCL8 Lymph node [255]
CXCR4 Lymph node [455, 457, 458]
CXCR7 Lymph node [459]

in the literature. However, there are also a small number of
chemokine and GPCR interactions that may inhibit tumor
cells invasion, such as CX3CR1/CX3CL1 interaction in glioma
[304].

While the aberrant expression of chemoattractantGPCRs
is an important feature for a motile phenotype of tumor
cells, the next step of tumor cell metastasis from the primary
mass is detachment. These cells must survive the loss of
interactions with extracellular matrix (ECM) that causes
anoikis for further invasion of blood or lymph vessels [217].
In breast cancer, the activation of both CXCR4/CXCL12 and
CCR7/CCL21 may reduce the sensitivity of metastatic cancer
cells to anoikis by upregulating antiapoptotic proteins. Con-
sequently, blocking the chemokine and GPCR interactions
attenuates breast cancer metastasis in vivo [217]. Recently,
another classical chemoattractant GPCR, BLT2, has also been
shown to establish resistance to anoikis in prostate cancer
cells through a BLT2-NOX-ROS-NF-𝜅B cascade [176].

Thus, accumulating evidence indicates an essential role
of chemoattractant GPCRs and ligands in every step of
cancer metastasis, including the acquisition of increased
motility, detachment from the primary tumor mass by
breaking downmatrix proteins, intra- and extravasation, and
lodgment in distant organs and lymph nodes. In addition,
chemoattractant GPCRs and ligands also orchestrate the
interaction of metastatic tumor cells with stromal cells, such
as TAMs, ECs, and fibroblasts, which act either as “driving
forces” for tumor cell dissemination or as “conditioners” of
the “soil” that facilitates the settlement of metastatic tumor

cells to develop secondary foci. Therefore, chemoattractant
GPCRs and ligands provide promising molecular targets for
prevention of tumor metastasis.

5. The Role of Chemoattractant GPCRs in
Tumor Neovascularization

Neovascularization is critical for consolidation of the tumor
microenvironment for tumor progression. Chemoattractant
GPCRs provide pro- and antiangiogenic factors and receptors
and are able to regulate two phases of neovascularization:
vasculogenesis and angiogenesis (Table 5).

5.1. Vasculogenesis. Vasculogenesis is the formation of new
blood vessels from circulating bone marrow-derived endo-
thelial progenitor cells (EPCs). Coordinated events are
required for the recruitment and incorporation of EPCs into
the tumor tissue, including migration, invasion, differentia-
tion, proliferation, and formation of vessels [461]. Although
VEGF is a well-known angiogenic factor taking part in the
vasculogenesis, other paracrine factors, such as chemoat-
tractants produced by tumor cells, are also involved. EPCs
expressing CXCR4 are mobilized by the ligand CXCL12 in
an autocrine or paracrine manner [503]. Another chemokine
CCL2 also mobilizes EPCs from the bone marrow [504].
These chemokines then promote EPC proliferation and guide
the cells into tumor stroma to form functional neovasculature
[505]. EPCs participating in neovascularization have also
been reported in HCC, in which myeloid-derived EPCs
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Table 5: Chemoattractant GPCRs associated with tumor neovascularization.

Receptors Tumors

Vasculogenesis

FPR1 Glioma [160]
FPR2 Ovarian cancer [123]
CCR2 Hepatocellular carcinoma [460]
CCR5 Hepatocellular carcinoma [460]
CCR6 Hepatocellular carcinoma [461]
CXCR2 Pancreatic cancer [462]
CXCR4 Breast cancer [320], melanoma [463]

Angiogenesis

FPR1 Glioma [161, 162, 316]
C5aR Epithelial ovarian cancer [17]
CCR1 Hepatocellular carcinoma [464], lymphoma [465], multiple myeloma [466]
CCR2 Breast cancer [22, 467, 468], esophageal cancer [469], gastric cancer [381], melanoma [470]
CCR4 Breast cancer [194]
CCR5 Multiple myeloma [466], renal cell carcinoma [326]
CCR10 Ovarian cancer [35]
CXCR1 Prostate cancer [471], renal cell carcinoma [37]

CXCR2
Cervical cancer [472], colorectal cancer [258, 259], glioblastoma [473], lung adenocarcinoma
[267, 474, 475], melanoma [418, 476], ovarian cancer [268], pancreatic cancer [269, 477–479],
prostate cancer [480], renal cell carcinoma [37, 481]

CXCR1/2 Glioblastoma [482], melanoma [251, 253], multiple myeloma [483], ovarian cancer [484],
pancreatic cancer [485], prostate cancer [254, 451, 486], renal cell carcinoma [37]

CXCR4
Breast cancer [487], colorectal cancer [488, 489], gastric cancer [490], glioblastoma [491–493],
hepatocellular carcinoma [494], ovarian cancer [495], pancreatic cancer [269, 496], prostate
cancer [497], squamous cell carcinoma [398]

CXCR6 Hepatocellular carcinoma [3], prostate cancer [295]

CXCR7 Bladder cancer [498], breast cancer [297], breast and lung cancer [499], colorectal cancer [488],
hepatocellular carcinoma [301], prostate cancer [500], renal cell carcinoma [501]

CX3CR1 Breast cancer [96], colorectal cancer [149], melanoma [502]

(colony forming unit-endothelial cells) as early EPCs highly
express CCR6 and are mobilized by the ligand CCL20
produced by HCC cells for migration and invasion of
tumor stroma to form vasculature. CCR6/CCL20 in tumor
microenvironments in addition plays a crucial role in driving
phenotypic switch of hematopoietic cells with increased
potential for angiogenic EC differentiation and attenuated
proinflammatory activity [461]. A classical chemoattractant
receptor, FPR1, may also participate in vasculogenesis in
human GBM.This was shown in a xenograft model in which
the number of EPCs incorporated into intracranial GBM
lesion was significantly reduced in tumors formed by GBM
cells in which FPR1 was depleted by RNA interference. The
EPC chemotactic and tubule-stimulating activities were also
attenuated in the supernatant of GBM cells deficient in FPR1
[160]. Another classical chemoattractant GPCR, the FPR1
variant FPR2, has also been reported to participate in recruit-
ingMSCs into tumor tissues to promote the formation of neo-
vasculature in response to tumor-derived ligand LL-37 [123].

5.2. Angiogenesis. Angiogenesis is a process in which new
blood vessels sprout from existing vasculature. In tumor
microenvironment, various cells regulate this process
through GPCRs, which are expressed on vascular ECs and
mediate cell recruitment and proliferation thereby extending
the new vasculature in response to the ligands produced

by tumor and other stromal cells. Tumor cells, tumor stem
cells, and infiltrating TAMs in particular also express GPCRs
capable of promoting the release of proangiogenic factors
recruiting and activating vascular ECs [1].

FPR1 selectively expressed by GBM cells when acti-
vated by exogenous and tumor derived agonists promotes
tumor cells to produce proangiogenic factors VEGF and
the angiogenic chemokine CXCL8 [161, 316, 506]. CXCR1/2
expressed by vascular ECs and CXCL8, the ligand produced
by tumor and stromal cells, are known to promote angiogen-
esis through inducing ECmigration and formation of tubules
[484, 507]. GBM stem cells may also utilize chemoattractant
GPCRs FPR1 and CXCR4 to participate in angiogenesis by
releasing VEGF [162, 249].

In addition to the direct interaction between chemoat-
tractant GPCRs expressed by ECs and ligands in the tumor
microenvironment, tumors take the advantage of infiltrating
stromal cells, such as CAFs, TAMs, and Tregs, to benefit
angiogenesis through GPCRs. In lung cancer, CAFs express
CCR5 and are activated byCCL3 to secrete hepatocyte growth
factor (HGF) to accelerate angiogenesis [326]. CAFs also
cooperate with tumor cells to promote angiogenesis through
CXCR4 expressed by both cell types. In pancreatic cancer,
tumor cells secrete CXCL8 and CAFs secrete CXCL12 to
enhance the recruitment and proliferation of ECs. However,
CXCL12 promotes EC infiltration and CXCL8 enhances
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tubule formation by ECs revealing distinct functions of
the CXCR2/CXCL8 and CXCR4/CXCL12 interactions in the
process [269].

In addition, TAMs are an important source of angiogenic
factors in tumor. For example, CCR2 and CD40 on TAMs are
activated by CCL2 and CD40L produced in gastric cancer
tissues and synergistically promote VEGF production to
increase microvessel density [381, 508]. Moreover, Tregs
expressing CCR10 are capable of accelerating angiogenesis
through secreting VEGF in response to CCL28 produced by
hypoxic tumor cells for EC infiltration and participation in
angiogenesis [35].

It is interesting to note that alcohol consumption con-
tributes to increased breast cancer angiogenesis, thus pro-
moting the growth and metastasis of tumor cells in an
animal model.This involves upregulated expression of CCR2
and CCL2 by tumor cells that increase the interaction
between tumor and vascular ECs [467]. Another physical
and chemical factor, radiation, exerts a similar effect through
CXCR4/CXCL12 interaction on tumor angiogenesis [509].

Conversely, some chemoattractant GPCRs, such as
CXCR3, are reported to mediate angiostatic activity through
non-ELRCXC chemokines CXCR4/9/10/11 in various tumors
[1]. The controversial results of angiogenesis are also found
in C5aR [16, 17]. Therefore, angiogenesis may be regulated
by a complex balancing process between opposing pro- and
antiangiogenic GPCR and ligand interactions.

6. Perspectives

Accumulating evidence indicates crucial roles of chemoat-
tractant GPCRs and their ligands in tumor progression
by shaping tumor microenvironment. Almost all cell types
including tumor cells per se are able to take the advantage
of GPCRs and ligands to affect tumor progression. Chemoat-
tractant GPCRs and ligands are involved in almost every step
of tumor development and progression such as increasing
tumor cell motility, invasiveness, intra- and extravasation,
dissemination, leukocyte infiltration, and angiogenesis.These
render the GPCRs and ligands promising drug targets for
disruption of the tumor progression cascade. Recently, new
agents targeting chemoattractant GPCRs have been devel-
oped and are being tested in the clinic, such as a humanized
anti-CCR4 monoclonal antibody, mogamulizumab (KW-
0761), aiming at curtailing cutaneous T cell lymphoma [510].
Therefore, gaining a better understanding of the GPCRs and
their ligands in tumor microenvironment is vital and will
provide novel therapeutic opportunities.
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[67] A. Fialová, S. Partlová, L. Sojka et al., “Dynamics of T-cell
infiltration during the course of ovarian cancer: the gradual shift
from aTh17 effector cell response to a predominant infiltration
by regulatory T-cells,” International Journal of Cancer, vol. 132,
no. 5, pp. 1070–1079, 2013.

[68] S. Cho, K. Koizumi, N. Takeno et al., “Anti-tumor effect of
combining CC chemokine 22 and an anti-CD25 antibody on
myeloma cells implanted subcutaneously into mice,”Molecular
Medicine Reports, vol. 2, no. 5, pp. 773–777, 2009.

[69] Y. C. Nesbeth, D. G. Martinez, S. Toraya et al., “CD4+ T
cells elicit host immune responses to MHC class II− ovarian
cancer through CCL5 secretion and CD40-mediated licensing
of dendritic cells,” The Journal of Immunology, vol. 184, no. 10,
pp. 5654–5662, 2010.

[70] D. Bell, P. Chomarat, D. Broyles et al., “In breast carcinoma tis-
sue, immature dendritic cells reside within the tumor, whereas
mature dendritic cells are located in peritumoral areas,” The
Journal of Experimental Medicine, vol. 190, no. 10, pp. 1417–1425,
1999.

[71] M. C. Thomachot, N. Bendriss-Vermare, C. Massacrier et al.,
“Breast carcinoma cells promote the differentiation of CD34+
progenitors towards 2 different subpopulations of dendritic cells
with CD1aℎ𝑖𝑔ℎCD86−Langerin- and CD1a+CD86+Langerin+
phenotypes,” International Journal of Cancer, vol. 110, no. 5, pp.
710–720, 2004.

[72] T. Fushimi, A. Kojima, M. A. S. Moore, and R. G. Crystal,
“Macrophage inflammatory protein 3𝛼 transgene attracts den-
dritic cells to established murine tumors and suppresses tumor
growth,” Journal of Clinical Investigation, vol. 105, no. 10, pp.
1383–1393, 2000.

[73] A. Biragyn, M. Surenhu, D. Yang et al., “Mediators of innate
immunity that target immature, but not mature, dendritic
cells induce antitumor immunity when genetically fused with
nonimmunogenic tumor antigens,” Journal of Immunology, vol.
167, no. 11, pp. 6644–6653, 2001.

[74] H. Ohtani, T. Nakayama, and O. Yoshie, “In situ expression of
the CCL20-CCR6 axis in lymphocyte-rich gastric cancer and its
potential role in the formation of lymphoid stroma,” Pathology
International, vol. 61, no. 11, pp. 645–651, 2011.

[75] K. Tsuge, H. Takeda, S. Kawada, K. Maeda, and M. Yamakawa,
“Characterization of dendritic cells in differentiated thyroid
cancer,” Journal of Pathology, vol. 205, no. 5, pp. 565–576, 2005.

[76] S. Wu, W. Xing, J. Peng et al., “Tumor transfected with
CCL21 enhanced reactivity and apoptosis resistance of human



BioMed Research International 19

monocyte-derived dendritic cells,” Immunobiology, vol. 213, no.
5, pp. 417–426, 2008.
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stem cell-derived CCL-9 and CCL-5 promote mammary tumor
cell invasion and the activation of matrix metalloproteinases,”
Cell Adhesion and Migration, vol. 7, no. 3, pp. 315–324, 2013.

[180] J. Kouno, H. Nagai, T. Nagahata et al., “Up-regulation of CC
chemokine, CCL3L1, and receptors, CCR3, CCR5 in human
glioblastoma that promotes cell growth,” Journal of Neuro-
Oncology, vol. 70, no. 3, pp. 301–307, 2004.

[181] M. Dagouassat, N. Suffee, H. Hlawaty et al., “Monocyte
chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic
myofibroblasts promotes migration and invasion of human
hepatoma cells,” International Journal of Cancer, vol. 126, no. 5,
pp. 1095–1108, 2010.

[182] X.Wu, J. Fan, X.Wang et al., “Downregulation of CCR1 inhibits
human hepatocellular carcinoma cell invasion,” Biochemical
and Biophysical Research Communications, vol. 355, no. 4, pp.
866–871, 2007.

[183] D. W. Jung, Z. M. Che, J. Kim, K. Y. Kim, D. Williams, and J.
Kim, “Tumor-stromal crosstalk in invasion of oral squamous
cell carcinoma: a pivotal role of CCL7,” International Journal of
Cancer, vol. 127, no. 2, pp. 332–344, 2010.

[184] H. Long, R. Xie, T. Xiang et al., “Autocrine CCL5 signaling
promotes invasion and migration of CD133+ ovarian cancer
stem-like cells viaNF-𝜅B-mediatedMMP-9 upregulation,” Stem
Cells, vol. 30, no. 10, pp. 2309–2319, 2012.

[185] H. Y. Chiu, K. H. Sun, S. Y. Chen et al., “Autocrine CCL2
promotes cell migration and invasion via PKC activation and
tyrosine phosphorylation of paxillin in bladder cancer cells,”
Cytokine, vol. 59, no. 2, pp. 423–432, 2012.

[186] W. B. Fang, I. Jokar, A. Zou, D. Lambert, P. Dendukuri, and N.
Cheng, “CCL2/CCR2 chemokine signaling coordinates survival
and motility of breast cancer cells through Smad3 protein- and
p42/44 mitogen-activated protein kinase (MAPK)-dependent
mechanisms,” The Journal of Biological Chemistry, vol. 287, no.
43, pp. 36593–36608, 2012.

[187] J. Moreaux, D. Hose, A. Kassambara et al., “Osteoclast-
gene expression profiling reveals osteoclast-derived CCR2
chemokines promotingmyeloma cell migration,” Blood, vol. 117,
no. 4, pp. 1280–1290, 2011.

[188] S. Furukawa, S. Soeda, Y. Kiko et al., “MCP-1 promotes inva-
sion and adhesion of human ovarian cancer cells,” Anticancer
Research, vol. 33, no. 11, pp. 4785–4790, 2013.

[189] V. Levina, B. M. Nolen, A. M. Marrangoni et al., “Role of
eotaxin-1 signaling in ovarian cancer,” Clinical Cancer Research,
vol. 15, no. 8, pp. 2647–2656, 2009.

[190] J. Gao, A.Wang,M. Zhang et al., “RNAi targeting of CCR2 gene
expression induces apoptosis and inhibits the proliferation,
migration, and invasion of PC-3Mcells,”Oncology Research, vol.
21, no. 2, pp. 73–82, 2014.

[191] T. H. Lin, H. H. Liu, T. H. Tsai et al., “CCL2 increases 𝛼v𝛼3
integrin expression and subsequently promotes prostate cancer
migration,” Biochimica et Biophysica Acta, vol. 1830, no. 10, pp.
4917–4927, 2013.

[192] T. Miyagaki, M. Sugaya, T. Murakami et al., “CCL11-CCR3
interactions promote survival of anaplastic large cell lymphoma
cells via ERK1/2 activation,” Cancer Research, vol. 71, no. 6, pp.
2056–2065, 2011.



BioMed Research International 23
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expression—a novel antiangiogenic target in gastric cancer?”
PLoS ONE, vol. 5, no. 4, Article ID e10087, 2010.

[491] A. Salmaggi, M. Gelati, B. Pollo et al., “CXCL12 in malignant
glial tumors: a possible role in angiogenesis and cross-talk
between endothelial and tumoral cells,” Journal of Neuro-
Oncology, vol. 67, no. 3, pp. 305–317, 2004.

[492] S. A. Rempel, S. Dudas, S. Ge, and J. A.Gutiérrez, “Identification
and localization of the cytokine SDF1 and its receptor, CXC
chemokine receptor 4, to regions of necrosis and angiogenesis
in human glioblastoma,” Clinical Cancer Research, vol. 6, no. 1,
pp. 102–111, 2000.

[493] Y. Ping, X. Yao, J. Jiang et al., “The chemokine CXCL12 and
its receptor CXCR4 promote glioma stem cell-mediated VEGF
production and tumour angiogenesis via PI3K/AKT signalling,”
Journal of Pathology, vol. 224, no. 3, pp. 344–354, 2011.

[494] W. Li, E. Gomez, and Z. Zhang, “Immunohistochemical expres-
sion of stromal cell-derived factor-1 (SDF-1) and CXCR4 ligand



BioMed Research International 33

receptor system in hepatocellular carcinoma,” Journal of Exper-
imental and Clinical Cancer Research, vol. 26, no. 4, pp. 527–533,
2007.

[495] I. Kryczek, A. Lange, P. Mottram et al., “CXCL12 and vascular
endothelial growth factor synergistically induce neonaniogeni-
sis in human ovarian cancers,” Cancer Research, vol. 65, no. 2,
pp. 465–472, 2005.

[496] T. Koshiba, R. Hosotani, Y. Miyamoto et al., “Expression of
stromal cell-derived factor 1 and CXCR4 ligand receptor system
in pancreatic cancer: a possible role for tumor progression,”
Clinical Cancer Research, vol. 6, no. 9, pp. 3530–3535, 2000.

[497] J. Wang, J. Wang, Y. Sun et al., “Diverse signaling pathways
through the SDF-1/CXCR4 chemokine axis in prostate cancer
cell lines leads to altered patterns of cytokine secretion and
angiogenesis,” Cellular Signalling, vol. 17, no. 12, pp. 1578–1592,
2005.

[498] M. Hao, J. Zheng, K. Hou et al., “Role of chemokine receptor
CXCR7 in bladder cancer progression,”Biochemical Pharmacol-
ogy, vol. 84, no. 2, pp. 204–214, 2012.

[499] Z. Miao, K. E. Luker, B. C. Summers et al., “CXCR7 (RDC1)
promotes breast and lung tumor growth in vivo and is expressed
on tumor-associated vasculature,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 104, no.
40, pp. 15735–15740, 2007.

[500] J. Wang, Y. Shiozawa, Y. Wang et al., “The role of CXCR7/RDC1
as a chemokine receptor for CXCL12/SDF-1 in prostate cancer,”
The Journal of Biological Chemistry, vol. 283, no. 7, pp. 4283–
4294, 2008.

[501] N. Maishi, N. Ohga, Y. Hida et al., “CXCR7: a novel tumor
endothelial marker in renal cell carcinoma,” Pathology Interna-
tional, vol. 62, no. 5, pp. 309–317, 2012.

[502] T. Ren, Q. Chen, Z. Tian, and H. Wei, “Down-regulation
of surface fractalkine by RNA interference in B16 melanoma
reduced tumor growth in mice,” Biochemical and Biophysical
Research Communications, vol. 364, no. 4, pp. 978–984, 2007.
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